E-Books

πŸ“šοΈ Free Online Data Science E-Books
Featured book: NUMPY BY EXAMPLE - A Beginner's Guide to Learning NumPy by the DAT Linux team.
πŸ›’οΈ BUY the PDF or EPUB e-book from Leanpub.

This is the online list of the same curated data science e-books that you’ll find in the DAT Linux Control Panel “Extras” tab, as well as enhanced features to filter and favourite e-books with a PRO tools license. To report an error or suggest a book, email info AT datlinux DOT com.


Books found: 0

πŸ“”οΈ A Business Analyst’s Introduction to Business Analytics - Fleischhacker [πŸ“–οΈ Read]
πŸ“”οΈ A Crash Course in Geographic Information Systems (GIS) using R - Branion-Calles [πŸ“–οΈ Read]
πŸ“”οΈ Advanced R - Wickham [πŸ“–οΈ Read]
πŸ“”οΈ A First Course in Linear Algebra - Beezer [πŸ“–οΈ Read]
πŸ“”οΈ A First Course on Statistical Inference - Peralta, GarcΓ­a-PortuguΓ©s [πŸ“–οΈ Read]
πŸ“”οΈ Agile Data Science with R - Edwin Thoen [πŸ“–οΈ Read]
πŸ“”οΈ A Little Book of R for Bioinformatics 2.0 - Avril Coghlan [πŸ“–οΈ Read]
πŸ“”οΈ Analysing Data using Linear Models: With applications in R - van den Berg [πŸ“–οΈ Read]
πŸ“”οΈ Analysing Quantitative Data with R - University of Warwick [πŸ“–οΈ Read]
πŸ“”οΈ Analyzing US Census Data: Methods, Maps, and Models in R - K. Walker [πŸ“–οΈ Read]
πŸ“”οΈ Analytics with Power BI and R - Etaati [πŸ“–οΈ Read]
πŸ“”οΈ An Introduction to Bayesian Thinking - Clyde, Γ‡etinkaya-Rundel, et al [πŸ“–οΈ Read]
πŸ“”οΈ An Introduction to Data Analysis - Michael Franke [πŸ“–οΈ Read]
πŸ“”οΈ An Introduction to Earth and Environmental Data Science - Ryan Abernathey [πŸ“–οΈ Read]
πŸ“”οΈ An Introduction to Spatial Data Analysis and Statistics: A Course in R - Paez [πŸ“–οΈ Read]
πŸ“”οΈ An Introduction to Statistical Learning 2ed - James, Witten, et al [πŸ“–οΈ Read]
πŸ“”οΈ Answering questions with data: Introductory Statistics for Psychology Students - Navarro, Suzuki [πŸ“–οΈ Read]
πŸ“”οΈ Applied Statistics with R - David Dalpiaz [πŸ“–οΈ Read]
πŸ“”οΈ A Whirlwind Tour of Python - Jake VanderPlas [πŸ“–οΈ Read]
πŸ“”οΈ Bayes Rules! An Introduction to Applied Bayesian Modeling - Johnson, Ott, Dogucu [πŸ“–οΈ Read]
πŸ“”οΈ Beyond Multiple Linear Regression - Roback & Legler [πŸ“–οΈ Read]
πŸ“”οΈ Big Data Analytics - Ulrich Matter [πŸ“–οΈ Read]
πŸ“”οΈ Big Data and Social Science - Foster, Ghani, et al [πŸ“–οΈ Read]
πŸ“”οΈ Authoring Books and Technical Documents with R Markdown - Yihui Xie [πŸ“–οΈ Read]
πŸ“”οΈ Computational and Inferential Thinking: The Foundations of Data Science - 2ed. Adhikari, DeNero, & Wagner [πŸ“–οΈ Read]
πŸ“”οΈ Computational Genomics with R - Altuna Akalin [πŸ“–οΈ Read]
πŸ“”οΈ Data analysis with Python (Summer 2021) - University of Helsinki [πŸ“–οΈ Read]
πŸ“”οΈ Data Analytics: A Small Approach - Huang, Deng [πŸ“–οΈ Read]
πŸ“”οΈ Data Mining and Machine Learning - Zaki, Meira, et al [πŸ“–οΈ Read]
πŸ“”οΈ Data Science: A First Introduction - Timbers, Campbell, & Lee [πŸ“–οΈ Read]
πŸ“”οΈ Data Science for Psychologists - HansjΓΆrg Neth [πŸ“–οΈ Read]
πŸ“”οΈ Data Science for Startups - Ben G Weber [πŸ“–οΈ Read]
πŸ“”οΈ Data Science in Education Using R - Estrellado, Bovee, et al [πŸ“–οΈ Read]
πŸ“”οΈ Data Science in Julia for Hackers - Carrone, Nicolini, & Obst Demaestri [πŸ“–οΈ Read]
πŸ“”οΈ Data Science Live Book - Pablo Casas [πŸ“–οΈ Read]
πŸ“”οΈ Data Science Practice - Stephenson [πŸ“–οΈ Read]
πŸ“”οΈ Data Visualization: A Practical Introduction - Kieran Healy [πŸ“–οΈ Read]
πŸ“”οΈ Data Visualization with R - Rob Kabacoff [πŸ“–οΈ Read]
πŸ“”οΈ Deep Learning - Goodfellow, Bengio, & Courville [πŸ“–οΈ Read]
πŸ“”οΈ Designing and Building Data Science Solutions - Van Otten [πŸ“–οΈ Read]
πŸ“”οΈ Dive into Deep Learning - Zhang, Aston, et al [πŸ“–οΈ Read]
πŸ“”οΈ Efficient R Programming - Gillespie & Lovelace [πŸ“–οΈ Read]
πŸ“”οΈ Engineering Production-Grade Shiny Apps - Fay, Rochette, et al [πŸ“–οΈ Read]
πŸ“”οΈ Essentials of Geographic Information Systems [πŸ“–οΈ Read]
πŸ“”οΈ Explanatory Model Analysis - Biecek & Burzykowski [πŸ“–οΈ Read]
πŸ“”οΈ Exploratory Data Analysis with R - Roger D. Peng [πŸ“–οΈ Read]
πŸ“”οΈ Exploring Enterprise Databases with R: A Tidyverse Approach - Smith, Yang, et al [πŸ“–οΈ Read]
πŸ“”οΈ Exploring, Visualizing, and Modeling Big Data with R - Bulut & Desjardins [πŸ“–οΈ Read]
πŸ“”οΈ Feature Engineering and Selection - Kuhn & Johnson [πŸ“–οΈ Read]
πŸ“”οΈ Financial Data Science - Riordan [πŸ“–οΈ Read]
πŸ“”οΈ Forecasting: Principles and Practice - Hyndman & Athanasopoulos [πŸ“–οΈ Read]
πŸ“”οΈ Fundamentals of Data Visualization - Claus O. Wilke [πŸ“–οΈ Read]
πŸ“”οΈ Geocomputation with Python - Dorman, Graser, et al [πŸ“–οΈ Read]
πŸ“”οΈ Geocomputation with R - Lovelace, Nowosad, & Muenchow [πŸ“–οΈ Read]
πŸ“”οΈ Geographic Data Analysis - University of Oregon [πŸ“–οΈ Read]
πŸ“”οΈ Geographic Data Science with Python - Rey, Arribas-Bel, Wolf [πŸ“–οΈ Read]
πŸ“”οΈ Geographic Data Science with R - Wimberly [πŸ“–οΈ Read]
πŸ“”οΈ ggplot2: elegant graphics for data analysis - Wickham, Navarro, & Pedersen [πŸ“–οΈ Read]
πŸ“”οΈ Hands-On Data Visualization - Dougherty & Ilyankou [πŸ“–οΈ Read]
πŸ“”οΈ Hands-On Machine Learning with R - Boehmke & Greenwell [πŸ“–οΈ Read]
πŸ“”οΈ Hands-On Programming with R - Garrett Grolemund [πŸ“–οΈ Read]
πŸ“”οΈ Happy Git and GitHub for the useR - Jennifer Bryan [πŸ“–οΈ Read]
πŸ“”οΈ Interpretable Machine Learning - Christoph Molnar [πŸ“–οΈ Read]
πŸ“”οΈ Introduction to Applied Linear Algebra - Boyd & Vandenberghe [πŸ“–οΈ Read]
πŸ“”οΈ Introduction to Cultural Analytics & Python - Melanie Walsh [πŸ“–οΈ Read]
πŸ“”οΈ Introduction to Data Science: Data Analysis and Prediction Algorithms with R - Irizarry [πŸ“–οΈ Read]
πŸ“”οΈ Introduction to Environmental Data Science - Jerry Davis [πŸ“–οΈ Read]
πŸ“”οΈ Introduction to GIS - VΓ­ctor Olaya [πŸ“–οΈ Read]
πŸ“”οΈ Introduction to Inferential Statistics - Trussler, Radley [πŸ“–οΈ Read]
πŸ“”οΈ Introduction to Modern Statistics - Γ‡etinkaya-Rundel & Hardin [πŸ“–οΈ Read]
πŸ“”οΈ Introduction to Probability for Data Science - Stanley H. Chan [πŸ“–οΈ Read]
πŸ“”οΈ Introduction to Spatial Data Programming with R - Dorman [πŸ“–οΈ Read]
πŸ“”οΈ Introduction to Statistics and Data Science - Northwestern [πŸ“–οΈ Read]
πŸ“”οΈ Introductory Statistics - Saylar Academy [πŸ“–οΈ Read]
πŸ“”οΈ Intro to GIS and Spatial Analysis - Manuel Gimond [πŸ“–οΈ Read]
πŸ“”οΈ IPython Cookbook 2ed - Cyrille Rossant [πŸ“–οΈ Read]
πŸ“”οΈ ISLR2 Labs (as a book) [πŸ“–οΈ Read]
πŸ“”οΈ Julia Data Science - Storopoli, Huijzer & Alonso [πŸ“–οΈ Read]
πŸ“”οΈ Jupyter Guide to Linear Algebra - Vanderlei [πŸ“–οΈ Read]
πŸ“”οΈ Learning Data Science - Lau, Gonzalez, & Nolan [πŸ“–οΈ Read]
πŸ“”οΈ Learning From Data - ForssΓ©n [πŸ“–οΈ Read]
πŸ“”οΈ Learning statistics with R: A tutorial for psychology students and other beginners - Navarro [πŸ“–οΈ Read]
πŸ“”οΈ Linear Algebra for Data Science with examples in R - Shaina Race Bennett [πŸ“–οΈ Read]
πŸ“”οΈ Linear Algebra - WikiBooks [πŸ“–οΈ Read]
πŸ“”οΈ Little Book of R for Time Series - Coghlan [πŸ“–οΈ Read]
πŸ“”οΈ Machine Learning and Big Data - Alkaseer [πŸ“–οΈ Read]
πŸ“”οΈ Machine Learning for Data Streams - Bifet, GavaldΓ , et al. [πŸ“–οΈ Read]
πŸ“”οΈ NUMPY BY EXAMPLE - A Beginner's Guide to Learning NumPy - DAT Linux [πŸ“–οΈ Read]
πŸ“”οΈ Mastering Shiny - Wickham [πŸ“–οΈ Read]
πŸ“”οΈ Mastering Software Development in R - Peng, Kross [πŸ“–οΈ Read]
πŸ“”οΈ Mastering Spark with R - Luraschi, Kuo, & Ruiz [πŸ“–οΈ Read]
πŸ“”οΈ Mining of Massive Datasets - Leskovec, Rajaraman, Ullman [πŸ“–οΈ Read]
πŸ“”οΈ Applied Machine Learning Using mlr3 in R - Becker, Binder, et al [πŸ“–οΈ Read]
πŸ“”οΈ Modern Applied Data Analysis - University of Georgia [πŸ“–οΈ Read]
πŸ“”οΈ Modern Data Science with R: 3ed - Baumer, Kaplan, & Horton [πŸ“–οΈ Read]
πŸ“”οΈ Modern Data Visualization with R - Kabacoff [πŸ“–οΈ Read]
πŸ“”οΈ Modern R with the tidyverse - Rodrigues [πŸ“–οΈ Read]
πŸ“”οΈ Modern Statistics with R - MΓ₯ns Thulin [πŸ“–οΈ Read]
πŸ“”οΈ Natural Language Processing with Python - Bird, Klein, Loper [πŸ“–οΈ Read]
πŸ“”οΈ Network Data Science - Pedigo [πŸ“–οΈ Read]
πŸ“”οΈ Neural Networks and Deep Learning - Nielson [πŸ“–οΈ Read]
πŸ“”οΈ Pattern Recognition and Machine Learning - Bishop [πŸ“–οΈ Read]
πŸ“”οΈ Practical Data Science - Clark [πŸ“–οΈ Read]
πŸ“”οΈ Probabilistic Programming: Bayesian Methods for Hackers - Davidson-Pilon [πŸ“–οΈ Read]
πŸ“”οΈ Probability, Statistics, and Data: A Fresh Approach Using R - Speegle & Clair [πŸ“–οΈ Read]
πŸ“”οΈ Pro Git - Chacon & Straub [πŸ“–οΈ Read]
πŸ“”οΈ PSPP for Beginners [πŸ“–οΈ Read]
πŸ“”οΈ Python Data Science Handbook - Jake VanderPlas [πŸ“–οΈ Read]
πŸ“”οΈ Python for Data Analysis, 3E - Wes McKinney [πŸ“–οΈ Read]
πŸ“”οΈ QGIS for Transport Research - Lovelace, Morgan, & Philips [πŸ“–οΈ Read]
πŸ“”οΈ R Companion to Statistics: Data Analysis and Modelling - Maarten Speekenbrink [πŸ“–οΈ Read]
πŸ“”οΈ R Cookbook - Long & Teetor [πŸ“–οΈ Read]
πŸ“”οΈ Regression and Other Stories - Gelman, Hill, & Vehtari [πŸ“–οΈ Read]
πŸ“”οΈ Reproducible Machine Learning for Credit Card Fraud detection: Practical handbook - Borgne, Siblini , et al [πŸ“–οΈ Read]
πŸ“”οΈ R for Data Analysis - French [πŸ“–οΈ Read]
πŸ“”οΈ R for Data Science - Wickham & Grolemund [πŸ“–οΈ Read]
πŸ“”οΈ R for Geographic Data Science - Stefano De Sabbata [πŸ“–οΈ Read]
πŸ“”οΈ R for Health Data Science - Harrison, Pius [πŸ“–οΈ Read]
πŸ“”οΈ R Graphics Cookbook 2ed - Winston Chang [πŸ“–οΈ Read]
πŸ“”οΈ R Markdown: The Definitive Guide - Xie, Allaire, & Grolemund [πŸ“–οΈ Read]
πŸ“”οΈ R Programming for Data Science - Roger D. Peng [πŸ“–οΈ Read]
πŸ“”οΈ R Programming - WikiBooks [πŸ“–οΈ Read]
πŸ“”οΈ R Programming: Zero to Pro - Feng & Zhu [πŸ“–οΈ Read]
πŸ“”οΈ Scipy Lecture Notes - scipy-lectures.org [πŸ“–οΈ Read]
πŸ“”οΈ Seeing Theory [πŸ“–οΈ Read]
πŸ“”οΈ Social Media Mining: An Introduction - Zafarani, Abbasi, Liu [πŸ“–οΈ Read]
πŸ“”οΈ Spatial Data Science - Pebesma & Bivand [πŸ“–οΈ Read]
πŸ“”οΈ Spatial Modelling for Data Scientists - Rowe & Arribas-Bel [πŸ“–οΈ Read]
πŸ“”οΈ Spatial Statistics for Data Science: Theory and Practice with R - Moraga [πŸ“–οΈ Read]
πŸ“”οΈ Speech and Language Processing - Jurafsky & Martin [πŸ“–οΈ Read]
πŸ“”οΈ STA237: Probability, Statistics and Data Analysis I - University of Toronto [πŸ“–οΈ Read]
πŸ“”οΈ STAT 414: Introduction to Probability Theory - Penn. State [πŸ“–οΈ Read]
πŸ“”οΈ STAT 500: Applied Statistics - Penn. State [πŸ“–οΈ Read]
πŸ“”οΈ STAT 501: Regression Methods - Penn. State [πŸ“–οΈ Read]
πŸ“”οΈ STAT 505: Applied Multivariate Statistical Analysis - Penn. State [πŸ“–οΈ Read]
πŸ“”οΈ STAT 508: Applied Data Mining and Statistical Learning - Penn. State [πŸ“–οΈ Read]
πŸ“”οΈ STAT 510: Applied Time Series Analysis - Penn. State [πŸ“–οΈ Read]
πŸ“”οΈ STAT 545: Data wrangling, exploration, and analysis with R - Bryan [πŸ“–οΈ Read]
πŸ“”οΈ Statistical Analysis Handbook - Dr Michael J de Smith [πŸ“–οΈ Read]
πŸ“”οΈ Statistical Inference via Data Science - Ismay & Kim [πŸ“–οΈ Read]
πŸ“”οΈ Statistical Learning with Sparsity: The Lasso and Generalizations - Hastie, Tibshirani, Wainwright [πŸ“–οΈ Read]
πŸ“”οΈ Statistical Methods for Data Science - Elizabeth Purdom [πŸ“–οΈ Read]
πŸ“”οΈ Statistical Thinking for the 21st Century - Russell A. Poldrack [πŸ“–οΈ Read]
πŸ“”οΈ Advanced Data Science - Irizarry [πŸ“–οΈ Read]
πŸ“”οΈ Statistics: Data analysis and modelling - Maarten Speekenbrink [πŸ“–οΈ Read]
πŸ“”οΈ Supervised Machine Learning for Text Analysis in R - Hvitfeldt & Silge [πŸ“–οΈ Read]
πŸ“”οΈ Telling Stories with Data: With Applications in R and Python - Alexander [πŸ“–οΈ Read]
πŸ“”οΈ Text Analysis with R - Engel & Bailey [πŸ“–οΈ Read]
πŸ“”οΈ Text Mining for Social Scientists - Lennert [πŸ“–οΈ Read]
πŸ“”οΈ Text Mining with R - Silge & Robinson [πŸ“–οΈ Read]
πŸ“”οΈ Text Mining with Tidy Data Principles - Silge [πŸ“–οΈ Read]
πŸ“”οΈ The Book of OHDSI [πŸ“–οΈ Read]
πŸ“”οΈ The Data Engineering Cookbook - Andreas Kretz [πŸ“–οΈ Read]
πŸ“”οΈ The Data Science Interview Book [πŸ“–οΈ Read]
πŸ“”οΈ The Data Validation Cookbook - van der Loo & ten Bosch [πŸ“–οΈ Read]
πŸ“”οΈ The Hitchhiker's Guide to Python - Reitz & Schlusser [πŸ“–οΈ Read]
πŸ“”οΈ The Turing Way: Handbook to reproducible, ethical and collaborative data science - Arnold, Bowler et al [πŸ“–οΈ Read]
πŸ“”οΈ Think Bayes 2 - Allen B. Downey [πŸ“–οΈ Read]
πŸ“”οΈ Think Stats: Exploratory Data Analysis in Python - Allen B. Downey [πŸ“–οΈ Read]
πŸ“”οΈ Exploratory Data Analysis in R - Gimond [πŸ“–οΈ Read]
πŸ“”οΈ Introduction to Power BI - Monash Bioinformatics Platform [πŸ“–οΈ Read]
πŸ“”οΈ Learning Data Visualization with Tableau - Hayley Boyce [πŸ“–οΈ Read]



Other ways to show your support:

🧰️
PRO
Introducing: DAT Linux PRO tools. Enhance your DAT Linux with extra power-tools including back-up/restore, app update notifications, app monitoring, custom links tab, dark theme, etc. One payment, perpetual license. Get PRO now!

πŸ’³οΈ Please subscribe/donate to help support DAT Linux development